probability n. 1.或有;或然性。 2.【哲學(xué)】蓋然性〔在 certainly 和 doubt 或 posibility 之間〕。 3.【數(shù)學(xué)】幾率,概率,或然率。 4.或有的事;可能的結(jié)果。 5.〔pl.〕〔美俚〕天氣預(yù)測(cè)。 What are the probabilities 有幾分把握? The probabilities are against us [in our favour]. 趨勢(shì)對(duì)我們好像不利[有利]。 hit probability 命中率。 in all probability 很可能,大概,多半,十之八九。 probability of (missile survival) (飛彈不被擊落的)概率。 The probability is that ... 大概是…,很可能是…。 There is every probability of [that] ... 多半有,多半會(huì)。 There is no probability of [that] ... 很難有,很難會(huì)。
Statistical convergence and probability measure 統(tǒng)計(jì)收斂與概率測(cè)度
With respect to the probability measures 關(guān)于概率族
Changes of probability measure and options pricing in jump-diffusion models 跳擴(kuò)散模型中的測(cè)度變換與期權(quán)定價(jià)
Equivalence theorem about weak convergence of probability measures'convolution powers on locally compact groups 局部緊群上概率測(cè)度卷積冪弱收斂等價(jià)性定理
Limit theorems for the integration of function sequence with respect to weak convergence probability measure sequence 函數(shù)序列關(guān)于弱收斂概率測(cè)度序列積分的極限定理
Particularly, if the probability measure u is symmetric or if the mean value is 0, then u is quasi-symmetric 特別地,當(dāng)概率測(cè)度對(duì)稱或均值為零時(shí),此概率測(cè)度是擬對(duì)稱的。
By using time-risk discount method, it is possible to price general assets under real probability measure, and the price expression is given 利用時(shí)間風(fēng)險(xiǎn)折現(xiàn)方法實(shí)現(xiàn)了風(fēng)險(xiǎn)資產(chǎn)在實(shí)際測(cè)度下的定價(jià),并給出其具體的價(jià)格表達(dá)式。
This paper develops a continuous time model by means of the bsde methodology, in order to price risky assets in terms of the real probability measure 摘要本文利用倒向隨機(jī)微分方程研究了連續(xù)時(shí)間下基于可交易證券的風(fēng)險(xiǎn)資產(chǎn)定價(jià)模型。
Secondly we study the properties of moment generating functions of probability measures, calculate its sub-differential by the convex analysis, use it to characterize the quasi-symmetric probability 本文研究了概率測(cè)度的矩母函數(shù)的性質(zhì),用凸分析的方法算出了矩母函數(shù)的次微分,并用此完全刻畫(huà)了c.j.stone提出的擬對(duì)稱概率測(cè)度的性質(zhì)。
We look at the problem of learning from examples as the problem of multivariate function approximation from sparse chosen data, and then consider the case in which the data are drawn, instead of chosen, according to a probability measure 并檢視稀疏精選值中多變量函數(shù)近似法等這些從實(shí)例學(xué)習(xí)法所發(fā)現(xiàn)的問(wèn)題,然后根據(jù)機(jī)率衡量,審思隨機(jī)獲得資料而非選定資料的案例。